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Abstract. Applicability of the mean-field approximation is examined, when the slave boson 
technique is used for the su(Nd) Anderson lattice model. The fluctuation component of the 
slave boson field is explicitly introduced and its interactions with electrons are studied. The 
self-energy parts are calculated up to the second order of the interactions without relying 
upon the usual l/Nd-expansion rule. Using perturbed propagators, we obtain modified self- 
consistency equations for the mean-field parameters. They are solved at the transition 
temperature and also at zero temperature. The transition temperature decreases by a certain 
factor when the fluctuation is incorporated. This factor mainly depends on the location of 
the atomic f level and the degeneracy N d .  We newly adopt this quantity as the quantitative 
measure of the fluctuation effects. It is confirmed that the mean-field theory is less affected 
by the fluctuation if the system is in the Kondo limit and the degeneracy is large. It is found 
that the fluctuation becomes more effective as the location of the atomic f level is closer to 
the Fermi level or the degeneracy of the orbital is smaller. The consequences for application 
of the mean-field theory to the real heavy-fermion compounds are discussed. 

1. Introduction 

In recent years, heavy-fermion systems have been attracting much interest, and intensive 
research has been performed experimentally [ 1,2] and theoretically [3-51. 

The experimental research [2] has found that there are material-independent proper- 
ties in the heavy-fermion systems. In particular, in a temperature range T < Tcoh, a 
coherent Kondo state is developed, and for T >  TK,  the system behaves as if the 
scatterings from each magnetic ion are mutually independent, and the crossover between 
these two states is the main interest of the research. The temperature Tcoh is a new 
characteristic temperature which has been suggested experimentally but has not been 
established theoretically yet. Nowadays, there are plenty of experimental data to be 
understood theoretically. 

There have been many theoretical efforts [3]. A microscopic model for the heavy- 
fermion systems is believed to be the Anderson lattice model, which is a direct gen- 
eralisation of the single-impurity Anderson model. There are several methods for 
studying this model. For example, the Coulomb interactions are taken into account with 
the help of perturbation methods [6], variational methods [7 ] ,  quantum Monte Carlo 
research [8], the slave boson method [9-111, and so on. 

In this paper, we study the su(Nd) Anderson lattice, which is a generalised model 
of the infinite-U Anderson lattice in order that electronic states at each lattice site are 
Nd-fold degenerated [ 121. We adopt the slave boson method, which was first introduced 
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by Coleman [ 101 to avoid the complicated algebraof Hubbard's projection operator. The 
simplest approximation to the slave boson formalism is the mean-field approximation [9]. 
It has been found to explain some experimental properties successfully. For instance, 
the universal behaviour of the specific heat, the magnetic susceptibility and the resistivity 
are explained by interactions of electrons with the fluctuation particles [13, 141, and 
elastic anomalies at low temperatures are derived in the phenomenological theory [15]. 
The l/Nd-expansion rule has been applied to calculations. In contrast, there are some 
properties which cannot be explained by the usual l/Nd-treatment of the fluctuation. 
For example, some workers [16, 171 have tried to understand ordered states in the 
coherent Kondo states by incorporating fluctuation effects without relying upon the 
l/Nd-expansion method. 

In the l/Nd-expansion theory, the mean-field parameters are assumed to be less 
affected by the fluctuation. However, interaction terms, which are of the higher order 
in the l/Nd-expansion theory, may give rise to large changes in mean-field parameters 
quantitatively. We examine this possibility in order to check applicability of the mean- 
field theory. In the present paper, we assume that the quantity Jp is small enough. Here, 
J i s  the Coqblin-Schrieffer coupling and p is the density of states of the conduction band. 
We calculate the self-energy parts of electrons and the slave bosons in the first order of 
Jp,  in other words in the second order of the interactions. Using perturbed propagators, 
we obtain the modified self-consistency equations for the mean-field parameters. 
Changes due to the fluctuation effects are considered. A reduction is found in the 
transition temperature. The factor of the reduction is determined by the position of the 
atomic f level and the degeneracy. We newly adopt this factor in order to measure the 
effects of the fluctuation. Although the phase transition is an artifact of the approxi- 
mation scheme, it is also certain that the transition temperature characterises the energy 
scale of electrons in the mean theory. We use this concept. Applicability of the mean- 
field theory is discussed by relying upon the newly introduced parameter. It is found that 
the mean-field theory is less affected by the fluctuation if the system is in the Kondo limit 
and the degeneracy is large. This is a well known result in the l/Nd-expansion theories 
[18,19]. In our theory, however, we can measure the degree of fluctuation effects 
quantitatively by the new parameter. The fluctuation is more effective as the location of 
the atomic f level is closer to the Fermi level or the degeneracy becomes smaller. The 
fluctuation effects on the mean-field parameters and some physical quantities are also 
discussed. 

In section 2, we review the model and the mean-field approximation. In section 3, 
we calculate the second-order self-energy parts and give the modified self-consistency 
equations. The fluctuation effects on the mean-field results are derived. In section 4, a 
summary and discussion are presented. 

2. Model and the mean-field theory 

Coleman [lo] introduced the slave boson method for the infinite-UAnderson model. A 
generalisation to the lattice system, in which electronic states at each lattice site are Nd- 
fold degenerated, is straightforward. The Hamiltonian [9, 111 is 

= ( - E f ) f r m f i m  + 2 &kCimckm + v x  (b:C:mfim +f:mCLmbi)  
im km rm 

i \ m  
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where frm denote an operator which annihilates a 4f electron with the z component of a 
spin m at the ith lattice site whose electronic level has the energy - Ef. The spin has the 
magnitude j ,  which gives the degeneracy Nd = 2j + 1. We take Ef to be positive, in this 
paper. The operator ckm annihilates conduction electrons with wavenumber k and the z 
component of the spin m. For simplicity, it is assumed that the spin of the conduction 
electrons has the same magnitude as the 4f electrons. The density of states of the 
conduction electrons, per site and one spin component, is assumed to be constant: 
p = 1/20  at -D < &k < D, and zero otherwise. We define c,, by the relation c,, = 
N-'j2 x k  exp( -ik R, )  ckm. The operator 6, annihilates a slave boson of the ith site. No 
more than one 4f electron number is introduced at the ith site. It is satisfied by the 
constraint 

Z C f r m f i m  + blbi = 1 (2 * 2) 
m 

for each site. It is taken into account in the Hamiltonian (2.1) with Lagrange's multiplier 
A,. Possible anisotropy in the mixing interaction Vis neglected. The Fermi level is taken 
to be zero: p = 0. 

The mean-field approximation [9,11] for the slave bosons assumes that 
(bi >mf = (6 )mf = r m f  ( 2 . 3 ~ )  

and site-independent Lagrange's multiplier 
A ,  = A  for all i. (2.36) 

The definition of the mean-field ground state is summarised in the appendix. The mean- 
field Hamiltonian becomes 

(6ybi)mf = r2,f 

where Ef = - Ef + Amf. The mixing interaction is effectively reduced by the factor rmf; 
so rmf is frequently called the reduction factor. 

To diagonalise Xmf, we introduce the finite temperature electron propagator of a 
matrix form 

I. -( T~ f km ( t > f  l m  (O) >mf rt, (O)) mf 

- ( T r C k m  ( z ) f  t (O))mf - (TrCkm l m  (O))mf 

-( T r  f k m  

It is readily calculated, and its Fourier transform satisfies 

G;'(iw, k) = 

(2.56) 

where w is the odd Matsubara frequency. Since Gm is spin independent, we suppress the 
suffix m. Also, we put A * = A ,  since rmf can be taken to be a real number. 

The spectrum of the quasi-particle is derived with the help of the relation 
det[G-'(E(k), k)] = 0 to be 

E ,  (k) = $[&k  + Ef 2 v ( & k  - J!?f)2 + 4rkfV2]. (2.7) 
The number nf, off electrons per site is calculated with the help of equation (2.6), at 

(2. Sa) 

(2.86) 

T = 0, and turns out to be 
nf = (Nd/2D){&V2/Ef + +[D + Ef - V ( D  + 
The number n, of conduction electrons, is 

n, = (Nd/40)[0 - Ef + V ( D  + 

+ 4 r k f ~ 2 ] ) .  

+ 4rLfv2].  
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In the heavy-fermion systems, it is assumed that the electronic states are less than half 
filled, and the numbers of electrons satisfy nf G 1 and n, = Nd/2. Occupancy of the f 
state, which is close to unity, is realised by the smallness of rff in equation (2 .8~) .  The 
value of n, is easily evaluated if the relation D % Ef, rmfVis considered in equation (2.8b). 
Hereafter , we consider the case of the limit Itf + 1. 

The mean-field approximation gives the free energy per site 

The values of rmf and hmf are determined by the self-consistency equation 

m 

(2.10) 

and the constraint (2.2). 

constraint (2.2), we obtain nf = 1 at T = TFf. This relation can be written as 
Next, we derive the transition temperature Tr f  from equation (2.10). From the 

Nd dEk T r f  Gf(iw, k)l,=o = Ndfmf(Ef) = 1 (2.11) 
w 

wherefmf(x) = l/[exp(x/T:') + 11. It is rewritten as 

E ,  = TPf lOg(Nd - 1). 

Equation (2.10) is transformed into 

Performing integration and using equation (2.12), we obtain 

where we define y(Nd) as 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Note that log[y(Nd = 2)] = 0.577 is Euler's constant. Equation (2.14) can be rewritten 
as 

TFf = [2y(Nd)VD2 - E : / X ] [ ( o  4- J??f)/(O - Ef)]"d -2)'2Nd 

X eXp[-(2D/NdV2)(Ef + Ef)]. (2.16) 
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We perform iterations in equations (2.16). Setting TFf  = 0 on the right-hand side, we 
obtain the first approximation of TFf from the left-hand side. After the second iteration, 
we obtain 

(2.17) 
where TK is the Kondo temperature: TK = D exp(-2DEf/NdV2). Here, we have 
neglected the small quantities of the order of ( T K / D ) 2  in the coefficient of TK.  The 
quantity D T K / N d V 2  in the exponent is small enough. So equation (2.17) is a good 
approximation for TFf .  The coefficient of TK is very close to unity: for example, 
T,“‘ = 1.134TK for Nd = 2. Then, the system in the mean-field theory shows a phase 
transition around the temperature TK. It is well known that this transition is an artifact 
of the mean-field approximation. However, it is also certain that TFf is a kind of 
characteristic energy scale of the mean-field theory. In the next section, a decrease in 
the transition temperature will be adopted in order to measure fluctuation effects on the 
system. 

TFf = [ 2 y ( N d ) / x ] T K ( N d  - 1)” ~ 4 ~ ( N d ) D T K ~ ~ n ” ’ d v 2  

The quantity Amf has the value, at T = T P f ,  
Amf = Ef + TFf log(Nd - 1)  - Ef 

which can be readily derived from equation (2.12). 

111. This equation is transformed into 

(2.18) 

We estimate parameters at T = 0. Equation (2.10) mainly gives the value of Amf [9,  

(2.19) 

where 
E-(bot) = E- (k ) IEk=-D  

in the limit r i f  = 1 - nf 6 1. After integration, equation (2.19) becomes 
2 - D + ( 1  - n f )  (- V 2 / D  + E f V 2 / D 2  - Z2 V 2  / D 3 )  + O(,!?;/D2) (2.20) 

E f =  [ D  + E,  + (1 - n f ) ( V 2 / D  - E f V 2 / D 2  
+ E ~ V 2 / D 3 ) ]  exp[-2D(Ef + Ef)/NdV*]. (2.21) 

Assuming that I?, e Ef, we perform the iterations twice as in equation (2.16). Then, we 
obtain 
,?&= TK(1 - 2DT,/NdV2 + T K / D )  -k (1 - n f ) ( v 2 T K / D 2 ) ( 1  - 4DT,/NdV2) (2.22) 
where 1 - ~ D T , / N ~ v ~  + T K / D  and 1 - 4 o T K / N d V 2  arewithinanaccuracyoftheorder 
T K / D  and D T K / N d V 2 ,  respectively. Equation (2.22) means that the effective f level is 
located slightly above the Fermi level and that Amf has the magnitude Amf - Ef + TK at 
T=O. 

The value of rmf can be obtained from the constraint [9,11] 

(2.23) 

After integration, equation (2.23) is transformed into 
1 - nf = [ 1  + (NdV2/2D){E-(bot)/~f[E-(bot) - ,??f]}]-’. (2.24) 

Substituting equations (2.20) and (2.22) into equation (2.24), we obtain 
Y&f = 1 - iz f  = (2DT,/NdV2)(1 - 4DT,/NdV2 + ~ T K / D ) .  (2.25) 

As nf + 1, we obtain TK + 0. This means that the atomic f level - Ef must be far enough 
from the Fermi level. Substituting equation (2.25) into equation (2.22), we obtain 

(2.26) 
The second and third terms are within an accuracy of O ( D T K / N d V 2 )  and O ( T K / D ) ,  
respectively. 

= TK[ 1 - 2DT,/NdV2 + ( 1  + 2/N,j) T K / D ] .  
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The number of conduction electrons is evaluated as 
Iz, = (Nd/2D)[O - E-(bot)] (Nd/2)[1 + &(V2/D2 - &v2/03)]  

(Nd/2){1 + (2TK/NdD)(1 - 4DTK/NdV2) + O[(TK/D)*]}.  (2.27) 
The number of the conduction electrons is larger than Nd/2. This is due to the mixing 
interaction V. 

The effective mass at the Fermi level is given by 
m*/m = {[aE- ( k ) / a E k ] (  E- (k)=O}- l  = 1 + &fV*/E'Z - 2D/NdTK. (2.28) 

Therefore, m* is greatly enhanced. These heavy quasi-particles have been believed to 
give rise to the experimentally observed heavy Fermi liquid state or the coherent Kondo 
state. 

3. Effects of the second-order fluctuation 

We define the fluctuation field Pi as 
bi = r + P i .  

The accompanying particles are called P-bosons. The parameter r is to be determined 
self-consistently so as to minimise the free energy. The Hamiltonian (2.1) is rewritten 
"de = X m f  + "deint (3.2a) 

k 
T I  

( 3 . 2 ~ )  

where Po is the annihilation operator of the zero-momentum /?-boson. 
Using "demf,  we define the non-interacting P-boson propagator by 

D ( r )  = - ( T r P k ( r ) P : ( O > > t n f .  (3.3) 

D(iv) = l / ( iv  - 1,) (3.4) 
Since it does not depend on k ,  we denote it as D(s ) .  Its Fourier transform is 

where v is the even Matsubara frequency. 
The mean-field propagators Gf, G, and A in this section are derived from equation 

(2.6), if rmf and Ami are replaced by r and A ,  respectively. They are diagrammatically 
represented in figure 1, together with D(iv). 

The general formula for the free energy is 
F = -TlogUTr{exp[-(1/T)(~mf + %nt>l>ll. (3.5) 

The explicit r-derivative of equation (3.5) gives the minimisation condition of the free 
energy: 

a F  - = V x  (f;mcim + cimfim) + AV%(/3$ + Po) + 2rAN = 0 
a r  im 

where (. . .) denotes the thermal average. In order to overcome the Bose condensation 
of the fluctuation, the condition 

is needed. Then the general expression of the self-consistency equation turns out to be 

( 3 4  

( P i )  = ( P o )  = 0 (3.7) 

m 

where A(io,  k )  is the exactly perturbed propagator of A(iw, k ) .  
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: o  

: o  

Figure 1. Diagrammatic representations of Figure 2. Diagrammatic expression of the general 
propagators: -, f-electron propagator; - - -, self-consistency condition. The double lines 
conduction electron propagator; -, P-boson denote the exactly perturbed propagator A 
propagator. The line of the anomalous propagator 
A is composed of f-electron and conduction elec- 
tron lines. 

(iw, k ) .  

The meaning of the self-consistency equation (3.8) is that the spontaneous creation 
and annihilation processes of zero-momentum @-bosons cancel with the vacuum fluc- 
tuation processes of electrons. The situation is illustrated in figure 2. The cross in the 
diagram means the last term of equation (3 .2~) .  We must not include these processes in 
the diagrams in order to construct a consistent theory. 

In this section, we regard V2/DA as the small expansion parameter, and the self- 
energy parts of electrons and @-bosons are calculated up to the second order in Xint, 
since D(iv) has a denominator which involves a large A: A - E f B  TK.  Note that V2/  
DA - Jp,  where the Coqblin-Schrieffer coupling J has a magnitude of J - V 2 / E f .  
Usually, the l/N,-expansion method has been used to take the fluctuation into account. 
However, it is known that interaction terms which do not obey the rule of the l/Nd- 
expansion method may give rise to important contributions in some cases. For example, 
some workers [16, 171 have considered possible ordered states in the coherent Kondo 
state without the l/N,-rule. They may also affect the mean-field parameters quanti- 
tatively. In this section, we examine the applicability of the mean-field theory by includ- 
ing all the second-order interaction effects. 

The second-order self-energy parts of electrons are given in the matrix form 

where 

Zf(io) = -V2 -2 Gc(io - iv, q)D(iv) 
T 

N U 4  

T 
&(io) = -V2 -2 Gf(io + iv, q)D(iv) 

N "4 

(3. loa) 

(3. lob) 
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a-*- -,*- = 

-?-- 

Figure 3. The self-energy parts of the second- 
order fluctuation. '+ 

E,(tOp) = Eo(&k = O), E,(bot) = E,(&k = -0), f(X) = l/[exp(x/T) +1] and n(x)  = 
l/[exp(x/T) -11. The diagrammatic representations are shown in figure 3. 

The perturbed propagator G satisfies the Dyson equation 
G(iw, k )  = G(iw, k)  + G(io, k)S(iw, k)G(iw, k ) .  (3.11) 

The solution is 

(3.12) 

We give the P-boson's self-energy part n ( iv ,  k )  in figure 3. It is explicitly written 
m 
1 

II(iv, k )  = N d V 2  - Gf(iw + iv, k + q)G,(iw, q) 
N 0 9  

f(Eu(q)) - f(E& + 4)) 
X 

iv + E, (q )  - E , ( k  + q)  ' 

The perturbed propagator becomes 
D(iv, k )  = l/[iv - A - n( iv ,  k)]. 

(3.13) 

(3.14) 
The self-consistency equation within the second-order perturbation is obtained by 

se t t i ng j  = A in equation (3.8). It has the form 
T rV 
N N d v -  2 + rA = 0. 

[ io  - E, - zf(iw)] [iw - &k - ~ , ( i w ) ]  - r2V2 
The explicit &derivative of equation (3.5) gives the constraint 

(3.15) 

(3.16) 

Taking into account condition (3.7) and including the second-order self-energy parts, 
we obtain 

(3.17) 

For simplicity, we perform the static approximation for the self-energy parts. Also, 
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possible imaginary parts due to the interactions are not considerzd. This is sufficient for 
the aim of this paper; we discuss the low-temperature properties of the heavy Fermi 
liquid by the mean-field theory. 

A new dispersion relation of the electrons is obtained from det[G-'(E*(k), k)] = 0 
to be 

E I ( k )  = + ( E ~  + Zc(0) + Ef + Zf(0) 

& V[Ek + &(O) - E, - Xf(0)]2 + 4r2V2). (3.18) 

We derive a new expression for the transition temperature T,. At T = T,, the self- 
energy parts have simpler forms: 

(3 .19~)  

and 

Z,(iw) = V2[n,(A) +fc(Ef)]/(iw + A - 8,) (3.19b) 

where fc(x) = l/[exp(x/Tc) +1] and n,(x) = l/[exp(x/T,) -11. The quantity n,(A) is 
exponentially small since A - Ef. We can neglect n,(A). In equation (3.19a), the denomi- 
nator in the integrand varies weakly around the Fermi level. We can evaluate this 
integration at T = 0. In the static approximation, we obtain 

Zf(0) = (V2/2D) log[A/(D + A)] (3 .20~)  

(3.20b) 

The constraint (3.17) becomes nf + nc[A + n(0, kF)] = 1, where nf = 
NJC[Ef + Zf(0)]. The number n,(A + ll) of /3-bosons is exponentially small. We neglect 
this term hereafter. Then, we obtain 

E, Xf(O) = Tc log(Nd - 1). (3.21) 
Comparing equation (3.21) with equation (2.12), it is found that A is changed by the 
value of the magnitude -Xf(0). 

We write the self-consistency equation (3.15) in the form 

(3.22) 

Performing the integral as in section 2 and using the relation (3.21), we obtain 

T, = [2y(Nd)/n] V D 2  - [E,  + &(O) - 2,(0)12 

x {[D + Ef + &(O) - Z,(O)]/[D - Ef - Zf(0) + Zc(o)])"d-2)/2Nd 

x exp[-(2D/Ndv2)(Ef + Ef)]. (3.23) 
After the second iteration process, we get 

T, = [2y(Nd)/n]KT~(Nd - 1)-4y(Nd)DKTK/nNdV2 (3.24) 

where 

K = eXp[ 20&( o)/Ndv2] (3.25) 
and small terms of the order of Ef/D, Z,(O)/D and Zc(0 ) /D  in the coefficient of K T ~  are 
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neglected. The magnitude of K is evaluated with the help of equations ( 3 . 2 0 ~ ~ )  and (3.21) 
to be 

(3.26) K = [ E f / ( D  + E,)] "'d. 

(3.27) 

The transition temperature decreases at least by the factor K .  We shall regard this factor 
K as the measure of applicability of the mean-field approximation. 

Next, we derive the values of parameters at T = 0. The constraint (3.17) becomes 
nf + r2 = 1 ,  since n(A + n) = 0. Equation (3.15) becomes 

(3.28) 

where 
E l (bo t )  = E l ( l ~ ) ( , , = - ~  

= - D  + &(O) + ( 1  - n f ) { - V 2 / D  + [ E ,  + &(O) - &(0)]V2/D2}.  (3.29) 
Equation (3.28) is transformed into 
E;" = [ D  + E;" - Zc(0) + (1 - nf )  ( V 2 / D  - E; V 2 / D 2 ) ]  

X exp{-2D[Ef + E," - Z f ( 0 ) ] / N d V 2 }  (3.30) 
where E;" = Ef + &(O).  We perform the iterations twice and obtain 
E;" = K T K [ ~  4- T K / D  - ( ~ D T K / N , V * ) K ]  

+ ( 1  - f l f ) (v2TK/D2)K[1 + O(TK/D) + 0 ( 2 D T ~ / N d v ' ) ] .  (3.31) 
The quantity & ( O )  mainly contributes to the higher-order terms in the term 1 + 0(TK/ 
D )  + 0 ( 2 0 T K / N d v 2 )  in equation (3.31). From equation (3.31), the parameter A is 
evaluated as 

(3.32) A 2 E, - &(O) + KTK. 
The coefficient K has the magnitude 

K - [ Ef/( D + E,)] 'I'd (3.33) 

(3.34) 
at T = 0, too. This can be estimated from the expression 

with the dominant term approximation, E+(top) - D ,  E+(bot) - Ef + r2V2/D and 
E-(top) - Ef - r2V2/D.  The magnitude of A changes at least by the self-energy part 

&(O) = - ( V 2 / 2 D )  log{[E+(top) + il][E-(top) + A]/[E+(bot) + A ] A }  

W) ' 

The value of r is obtained from the constraint 
r2 V 2  

- 1 - r 2 = 2  (' dE$(k)  - (3.35) 
f -  [ E f +  &(O) - E?(k)12' 2D E?(bot) 

The calculation is parallel to that in section 2. The result is 
r2 = 1 - nf = ( ~ D T K / N ~ V ~ ) K L I  + ( K  + 1)T,/D - (4DTK/Ndv2)K]. 
Then, from equations (2.25) and (3.36) we obtain 

This means that the value of the order parameter r is decreased by the factor l&. 

(3.36) 

r2/r i f  - K. (3.37) 
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40 I 

E 
E 10 

+ 
8 

0 10 20 30 40 0 10 20 30 40 

T I K i  T I K i  

Figure 4. Numerical results for the parameters: (a) the mean-field r ;  (b )  the effective f level 
(Ef in the mean-field theory and Er + Zf in section 3) (the parameters are Nd = 2 ,  D = 
2 x lo4 K, V = 2500 K and El = 2000 K): ---, results of the mean field theory; -, 
solutions of equations (3.15) and (3.17). 

The number of conduction electrons is 

n, = ( N d / 2 ) [ 0  - E $  (bot)] 

Nd/2{1 - &(o)/D + ( ~ T K / N ~ D ) K [ ~  - (4DTK/Ndv2)K]} (3.38) 

where C,(O) is explicitly given by 

C,(O) = (r2V4/2D){E_(bot)/Ef(Ef - A)[& - E-(bot)] 

+ [l/(E, - A ) 2 ]  log/A[Ef - E-(bot)]/Ef[A - E-(bot)]l}. (3.39) 

We find that nc is mainly changed by the quantity -Nd&/2D, and TK in equation (2.27) 
changes into K T ~ .  

We evaluate the effective mass at the Fermi level, as in equation (2.28), to find 

m*/m = 1 + r2V2/[Ef  + cf(0)]2 - ( 2 D / N d T K ) ( 1 / ~ ) .  (3.40) 

The ratio is larger than that in the mean-field theory. The heavy quasi-particles have a 
weaker itinerancy character. Since T,  is decreased, the temperature range of the ordered 
phase is reduced and f electrons have a stronger localisation character at T = 0. 

In order to confirm the above estimations, we numerically solve the self-consistency 
condition (3.15) and the constraint (3.17) and compare the solutions with those of the 
mean-field theory in figure 4. The parameters are Nd = 2,  D = 2 X lo4 K, V = 2500 K 
and E, = 2000 K. Usually, the magnitude E, - D is assumed. We, however, take that 
value in order to see fluctuation effects clearly. We obtain TFf = 37.6 K and T, = 11.7 K. 
Then the numerical estimation for K is 11.7/37.6 = 0.311. The theoretical first-order 
estimation is [Ef/(D + E,)]1/2 = 0.302. Two values agree remarkably. Also, we numeri- 
cally confirm the theory from the points that r is decreased by the factor V K  and that the 
effective f level E, + Xf has the value K( -Ef + Amf) at T = 0 K. 

4. Summary and discussion 

The second-order perturbation due to the fluctuation has been found to decrease the 
transition temperature by the factor K - [E,/(D + Ef)]l/Nd from its value of the mean- 
field theory. The values of the mean field r and the effective f level, at T = 0, decrease 
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by the factors fi and K,  respectively. Also, we have found that the effective mass of 
quasi-particles at T = 0 increases by the factor K - ~ .  These results imply that the mean- 
field ground state is more or less affected by the fluctuation. The effects of the fluctuation 
appear more strongly for the system with smaller Nd. 

It is also shown that T, does not change so drastically in the system with larger Nd. 
In particular, K -+ 1 as Nd + a. This coincides with the usual assumption that the mean- 
field theory is a good starting point when the fluctuation is treated making use of the 
l/Nd-expansion method [ 121. 

The factor K, which is the measure of the applicability, also depends on the parameter 
E,. In the limit nf+  1, the quantity r approaches zero, i.e. TK + 0. This implies that the 
atomic f level - Ef becomes deep enough. ( E ,  is comparable with 0.) Thus the factor K 
is not very small. This confirms the assumption that the mean-field theory would be a 
good first approximation if the system is in the Kondo limit. However, as nf becomes 
much smaller than unity, the value of E, decreases and K becomes very small. Thus the 
mean-field solution is more unreliable as the occupancy of the f state decreases. It would 
be desirable to find a new method which does not depend on the mean-field theory, even 
using the slave boson method, for these situations. 

We have considered fluctuation effects by the second-order perturbation method. 
Higher-order interaction effects can be taken into account by a self-consistent renor- 
malisation method. We believe that the results do not change qualitatively if the quantity 
J p  can be regarded as sufficiently small. 

For real Ce compounds, Nd = 14 when all the 4f orbitals are degenerate, and Nd = 
6 or 8 when there are spin-orbit interactions. The value of Nd is smaller if the crystalline- 
field splitting is effective at low temperatures. Usually, an Nd-value of 2 or 4 is assumed 
in the coherent Kondo state, and the Kondo limit Ef - D is taken. It would be dangerous 
to consider that the factor K is very close to unity. It might be necessary to apply another 
method in this situation. 
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Appendix: definition of the mean field 

In this appendix, we describe the definition of the mean-field ground state and the 
thermal average for the slave boson and the P-boson in detail. 

A l .  Ground state 
The coherent state for the slave boson bi is 

r" r2 
7 (bl)" 10) = exp( - 2) exp(rbl) 10) = exp( - :) (Al .  1) 

n = O  n. 
where r is a positive real number. Since Ir) has the properties bilr) = rlr) and 
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b:bilr) = r21r) ,  we obtain 
(rlb:b,Ir) = r2 ( A l . 2 ~ )  
(rlbi jr) = (rib: Ir) = r.  (A1.2b) 

With these relations, the mean-field ground state is defined as / r )  for all the lattice site i. 
The /?-boson pi = bi - r has the properties 

Pi lr )  = (b i  - r)ir)  = 0 (A1.3~)  

(P:Pi)(1/G7)(p:)nir) = n( l /G7>(Pi>n l r ) .  (A1.36) 

Then, ir) is the vacuum state for the @-boson and off-diagonal matrix elements vanish in 
the Fock space spanned by I'Ii (#')"~/fl ir)(ni = 0,1 ,2 , .  . .). 

We consider the Hamiltonian 

x = A p i p i .  (A1.4) 
i 

To derive perturbative corrections to the mean-field theory, it is reasonable to define 
the 0-boson propagator in the form 

(A1.5) 

Using the Hamiltonian (A1.4), we derive the Fourier transform of equation (A1.5) 

(A1.6) 

D(t ,  k )  = -i(rlTPk(t)P:(o) Ir). 

to obtain 

D ( v ,  k )  = l/(v - A + is) .  

A2. Finite temperatures 

We denote the thermal average over the states I l i  (/?:)ni/w Ir) (ni = 0,1,2,  . . .) as 
( )mf. Then, we get 

(0: P l ) m f  = Tr[P pi exp( - x/T)I/Tr[exP( - x/T>I  = l/[exP(A/T) -11 (A2,la) 

( P i ) m i  = ( P l ) m f  = 0 
where X is the Hamiltonian (A1.4). Also, we obtain 

(A2.16) 

The corresponding definition of the propagator in equation (A1.5) is 

Its Fourier transform is 

D(iv, k)  = l/(iv - A )  
where Y is the even Matsubara frequency. This form has been used in the text. 
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